
Image Captioning With Attention and Transfer
Learning

Oğuzhan Karaahmetoğlu
o.karaahmetoglu@bilkent.edu.tr

ID: 21901271

Furkan Şahinuç
furkan.sahinuc@bilkent.edu.tr

ID: 21400503

Selim Furkan Tekin
furkan.tekin@bilkent.edu.tr

ID: 21501391

Mümtaz Torunoğlu
mumtaz.torunoglu@ug.bilkent.edu.tr

ID: 21101549

Abstract—This document is prepared for the final project of
the course EEE 543 Neural Networks. Aim of the project is to
generate meaningful sentences describing a given image which
is referred as Image Captioning in the literature. Due to its
real-life applications, various solutions and datasets related to
the Image Captioning problem were published and are available
online. In this report, we first describe the analyses performed on
the dataset. Then, we describe our approach to the problem by
describing our model architecture and data flow. At every step,
we compare our approach with the current works in the literature
and explain the reasoning behind our algorithmic decisions by
stating the advantages and disadvantages for different possibili-
ties. Lastly, we provide results that present the performance of
our approach.

I. INTRODUCTION

Image captioning is the problem of generating meaningful
sentences describing the contents of an image. Due to its
possible real-life applications, it has attracted the attention
of the researchers. Therefore various solutions regarding this
problem were proposed in the literature. Almost all of these
solutions divide the problem into two main parts, visual feature
extraction and word generation mechanism.

Convolutional Neural Networks (CNN) [1] are the most
common models used in the visual feature extraction part. The
main reason is because the CNNs have proved their ability to
model complex patterns in the input images for many different
tasks. Because of their superior abilities in visual tasks, they
became the most frequently used approach in visual feature
extraction module. Although a simple CNN could produce
a feature vector that is able to describe the image alone, in
some approaches, an attention mechanism [2] is added to the
CNN model to increase the feature extraction performance.
Another approach is to detect objects in an image and feed the
segmented objects and their spatial locations to a CNN model
to guide the model to infer the spatial relations of the objects in
an image [3]. Both of these approaches have shown significant
performance improvements compared to a simple CNN model.
However, it would mean a longer training process and more
computational and memory resources if one decides to extend
a simple CNN architecture with such modifications. On the
other hand, some famous CNN models such as Inception

[4] and VGGNET [5] were previously trained famous image
classification benchmarks such as ImageNet challenge[6]. In-
herent structure of these models have residual connections and
pooling/normalization layers which have added performance
improvements to a simple CNN model. Moreover, pretrained
weights of these models allow them to be used in different
tasks without training from scratch which is known as transfer
learning [7].

In the second main part, words are generated using the
visual features generated by extractor module. The dominant
approach in this section is to use a Recurrent Neural Network
(RNN) [8] to generate words iteratively. Although, some
approaches use a simple Multi Layer Perceptron (MLP) and
padded inputs to generate a word by observing the previously
generated words only. However, thanks to their inherent struc-
ture, the recurrent networks have shown superior performance
compared to other models in time series problems such as
time series classification, regression, translation and also the
sentence generation tasks. A special version of the RNNs is
a Long Short Term Memory (LSTM) model [9]. This model
has gated structures which allows it to be trained for longer
iterations without suffering too much from the exploding or
vanishing gradients problems as standard RNNs do. In LSTM
sentence generation approaches, a word is generated at every
step using the propagated state vector which contains all the
temporal information from start until the current time step.
Hence, they can capture the sentence generation rules and
some grammatical rules. A more advanced approach is to use
a bidirectional LSTM which passes through a sentence not
only in forward direction but also in the backward direction
[10]. Although this approach has shown better performance,
it would require a more complex data flow.

Although a CNN model and an LSTM model is sufficient
to model the visual features and generate caption describing
those features, such model lacks the information about the
word relations. In sentence generation task, co-occurrences
and positions of word pairs are important. Some words and
phrases can occur in pairs which should be inferred by the
model. To model these word interactions, word embedding
layers are used. A word embedding model generates a fixed

length vector for each word in the available vocabulary, i.e. the
set of possible words to be generated. These vectors represent
the connections between any two words in high dimensional
vectors. It is possible to use pretrained embedding vectors for
many words. Some examples are fast text [11] and GLOVE
[12]. These embeddings were trained on online sources such
a Wikipedia. Hence, they can model the word interactions
without requiring a training from scratch.

In our work, we aim to present an image captioning model
that is able to extract useful visual features and use them
to generate meaningful and grammatically correct sentences.
However, we have computational resource and memory lim-
itations. Hence, we aim to present a simple model that does
not require too much computational resources while show-
ing adequate performance. Enforcing a model to generate
grammatically correct sentences is hard. Hence, we evaluate
our model with both a commonly used bilingual evaluation
understudy (BLEU) score [13] and by manual visualizations.

II. METHODS

A. Problem Description

We observe a set of images X = {xi}Ni=1 which are 3-
dimensional arrays with dimensions (c, h, w) where c is the
color channels, h is the height and w is the width of the image.
For every image, there is a ground-truth caption yi. A caption
that has length n is a sequence of n words, i.e. yi = [wj]

n−1
j=0

is a caption with words wj . The aim is to generate a caption,
ŷi = [ŵj]

n−1
j=0 , for a given image xi. Hence, a mathematical

model F should be designed such that a caption ŷi will be
generated for an image xi as in (1).

ŷi = F (xi) (1)

We suffer the loss λ(ŵi, wi) for each generated word
with corresponding ground truth word wi. For a sentence,
losses of all the words are summed which is l(ŷi, yi) =∑n−1

j=0 λ(ŵj , wj). And for all the images in the dataset, we
suffer the sum of all caption losses which is L(Ŷ , Y) =∑N

i=1 λ(ŷi, yi) where Ŷ = {ŷi}Ni=1. In this problem, wi ∈
{0, 1, 2, ...,W − 1} where W is the size of vocabulary, i.e.
the number of possible ground-truth words. Hence, generated
words, ŵi ∈ {0, 1, 2, ...,W − 1} also. For that reason, the
problem is a multistep and multilabel classification problem
with W classes.

In the following subsection, we will present the analyses
that we have performed on the provided dataset and on a real-
life publicly available dataset for comparison.

B. Data Analysis

A dataset was provided to us for the project. We have
performed our experiments and analysis on the provided
dataset and, for comparison purposes only, on a public dataset,
Flickr8k. The provided dataset contains 72k images whereas
publicly available Flickr8k dataset contains 8k images. In or-
der to understand the structure (i.e. image dimensions, number
of channels) and content of images (i.e. the common objects,

(a) Sample image drawn from
the provided dataset. Outdoor
light conditions.

(b) Sample image drawn
from the provided dataset.
Indoor light conditions.

Fig. 1: Two samples drawn from the provided dataset.

light conditions, background), we have randomly sampled
some images from the provided dataset. We realized that both
the provided dataset and the Flickr8k dataset contains images
with different width and height values. Also, some of the
images had single color channel whereas others have three
color channels. To simplify the data flow in our model, we
have decided to work with fixed width, height and channel
dimensions. To this end, we have transformed all the images
to a fixed width, height and channel size which are 224, 224
and 3.

To analyze the image contents, we have sampled some
images and inspected them. As seen from the figure 5, the
dataset contains images with different ambiences. In figure
5, we can observe an image of a forest view which has high
brightness level. On the contrary, the figure 1b, is taken indoors
and hence it has a lower brightness level. Moreover, the objects
that are referred in the corresponding caption are not always
at the same places in the images.

We have also inspected the label sentences. Label sen-
tences contain some special words marking special points
in sentences. For example, every sentence starts with a start
token and ends with an end token. All words after the end
token are null tokens. Moreover, the provided dataset has an
unknown token. Each sentence has a fixed length of 17. We
have computed the histogram of the location of the end token
in all the sentences. Also, we have computed that the ratio of
unknown tokens in the whole dataset is 7.29 %. Also, we have
noted that the location of the unknown token is not a fixed
location. Therefore, we have concluded that we can simply
ignore the presence of the unknown token and regard it as
a regular word. Since it is not at a fixed location and has
no connection with the sentence, our model should be able
to learn that it is an out-of-vocabulary word that should not
be generated. There are 1004 words in the vocabulary of the
provided dataset whereas there are 6690 words in the Flickr8k
dataset including the special tokens.

We also computed the histogram of every word which
gives us an insight about the distribution of the words in all
sentences. We have seen that the words ”a” and ”the” were the
most commonly used two words. However, such words do not
give any information since they were expected to be present in
most, if not all, of the sentences. We have focused on the nouns
and objects since they give an accurate information about

Fig. 2: Co-occurrence matrix for the top 10 most frequent
words in the dataset. It can be seen that the word ”a” is used
with all other words frequently which is an expected result.

the content of the images. Most frequently used objects were
common objects like ”bus”, ”tree”, ”person”. With this word
analysis, we are able to get a crude estimation of the image
contents. Since most of the objects appearing in the images are
common objects, we can conclude that it is possible to apply
previously proposed models that were applied to datasets with
similar content.

Lastly, we have computed the co-occurence histogram for
all the words in the vocabulary. This analysis gives insight
about the correlation between word pairs. Co-occurence matrix
is shown in figure 2. This knowledge could be used as a
prior estimate for the word embedding matrix which relates
the words in fixed length vectors. However, since the most
frequent words are common objects, we have decided to use
a pretrained embedding layer to generate word embeddings.

The main point we can conclude from our observations
in data analysis is that the provided dataset has a content
that is similar to the publicly available image and sentence
datasets. Hence, we conclude that using pretrained model
weights without training them would not limit the performance
of our overall architecture.

C. Model Description

In this section we describe the mathematical structure of our
proposed model. We also describe the design step by step and
analyze each decision. We provide analysis of advantages and
disadvantages of some possible design choices and explain
the reason why we have chosen the current design. Our
architecture consists of two main models, a visual feature
extractor module and a word processing module. We can
introduce the overall diagram with figure 3.

As seen from the figure 3, input images are first fed into
a visual feature extractor model which extracts the visual
features containing spatial information and connections about
the image. These visual features are then fed to a word
processor module which produces words that will form the
caption for the corresponding input image. This word proces-
sor module has an inherent memory allowing it to carry past
information while generating words iteratively. Hence, it can
extract temporal features if necessary.

Fig. 3: Overall block diagram of our approach.

Fig. 4: VGGNet model architecture. Three-tuples represent the
kernel size and number of filters of the convolutional layers
whereas two-tuples represent the kernel size of the pooling
layers.

In the following subsection, we describe the structure of the
visual feature extractor and word processor separately.

1) Visual Feature Extractor: In the data analysis part, we
have mentioned that the input images contain various different
conditions. An input image may be a landscape which does
not contain any dominant object or it can contain a group of
many objects, e.g. 2 children. Hence, spatial connections and
features in an image should be extracted from the images.
For this reason, we have used a convolutional neural network
(CNN).

Although they are powerful, training a CNN model requires
too much time and memory resource which we lack. We could
construct a minimal network with small number of parameters
and train it on the given dataset but, that would limit our model
performance by our memory and time constraints. For that
reason, we have downloaded a pretrained model and disabled
training to save memory and time. One could argue that using
a pretrained model that was trained on a specific task would
not achieve an adequate performance on a different problem.
However, in the data analysis section we have concluded that
the contents of the images mostly consist common objects.
Hence, they are familiar to famous vision benchmarks, e.g.
Imagenet. Therefore, we have decided to use a VGG16 model
that was pretrained on the Imagenet dataset. We have discarded
the fully connected layer attached to the output of the CNN
part of the VGG16 and used the convolutional section as our
visual feature extractor.

Structure of the VGG16 can be seen from the figure 4.
Note that the pretrained VGG16 model was trained on images
with size (224, 224). Hence, we are restricted to use these
dimensions. So, we preprocess the input images, by random
cropping and scaling, to have fixed sizes (224, 224). We
have also tested our approach with the pretrained Inception
model which did not bring any significant improvements. We
conclude that this is because the VGG16 model was able to
model visual features in the input images well enough.

There are also object detection approaches that aim to model
spatial connections between objects better by focusing on the
objects. We have abandoned this idea for two reasons, firstly
because some of the images do not contain any dominant
object, but a view. Secondly, it would require more time
and computational resources to train such models since it
is not easy to find pretrained models. Also, in some of the
approaches, attention mechanism was added to the CNN model
to increase performance.

At the output of the visual feature extractor, we obtain
a tensor with size (7, 7, 512). This tensor contains all the
description of the input image which will be used in word
generation process. In the next section, we describe how we
use this feature vector to obtain words of a caption one by
one.

2) Word Processing Module: This module takes the visual
features extracted by the CNN model and generates the words
of the caption of the input image. We generate each word
one by one. Each generated word needs information about
the words generated before it. Hence an inherent memory
is required in the word processing module. We solve this
problem by using a Long Short Term Memory (LSTM) to
carry state information about the caption sentence. There were
other alternatives to LSTM that carry the state information
such as RNN or GRU. In our experiments, we have also
observed that LSTM has shown better performance.

We feed the visual feature vector as the state vector of the
LSTM as shown in figure 5a. We represent the words as one-
hot vectors with length W which is the size of the vocabulary.
At first step, the start token is fed as input to the LSTM as
one-hot vector and the new state vector is generated. After
this step, the new state vector is passed to a Multi Layer
Perceptron (MLP) to obtain a length W vector, one value
for each character. This vector is obtained after a dense layer
with dropout rate 0.3 followed by a dense layer followed by a
softmax layer. Hence the elements of the vector represent the
probability distributions of all the words that can be generated
for the next step. The next state vector can be generated in two
ways. We can either use the word that was generated by our
model as the input of the next step and continue to generate in
this manner. Or, we could generate a word and use the ground-
truth word as input to the next step which is called teacher-
forcing method [14]. We have experimented with both of these
methods and observed that the latter approach converges to a
score faster while the former approach yields captions with
more word repetitions.

If the input word vectors are fed as one-hot vectors, we

expect the model to infer the correlations and connections
between two words. However, in order to provide this knowl-
edge prior to training, we are using an embedding layer which
converts the one-hot word vectors to fixed length embedding
vectors. These embedding vectors are used to model the
connection and distance between two words.

To overcome this problem, we use a pretrained embed-
ding model Fasttext which covers all the vocabularies that
are present in the provided dataset. There were also other
pretrained embedding vectors such ass GLOVE. We could
use most of the available embedding vectors since they are
all trained in similar tasks. Since we are using pretrained
vectors, we do not need to infer the word connections from
scratch. Special tokens, start, end and unknown, have random
embedding vectors since they have no meaning and connection
to other words.

We compute the initial state of the LSTM layer from the
visual feature vectors as shown in figure 5a. We have added
an attention mechanism to our LSTM model which is shown
in figure 5b. The same flow structure is implemented in a
previous work [2]. Attention mechanism weights some parts
of the visual feature vector. As in [15], our goal is to create a
context vector and feed it to input gates of LSTM cells. Paper
defines a mechanism φ, that computes the context vector, ẑt,
from annotation vectors, ni for i = 1, . . . , L, corresponding
to the features extracted at different image locations. This
weighting is controlled by αi vector which is calculated by
the attention model, fatt showed in figure 5c. This can be
interpreted as the relative importance of a location in an
image. Here is the mathematical representation of attention
mechanism,

e
(k)
j = fatt

(
n
(k)
i ,hj−1

)
α
(k)
j =

exp
(
e
(k)
j

)
∑L

k=1 exp
(
e
(k)
j

) (2)

After the weights are calculated paper proposes two meth-
ods to implement φ. We selected the soft attention mechanism,
which is the expectation of context vector. Then this context
vector is concatenated with word embedding and given as
input to the first layer of LSTM units.

E(sj |ni) [ẑj] =

L∑
k=1

α
(k)
j n

(k)
i (3)

where sj is the location to focus attention when generating
the jth word.

We believe that by adding this mechanism, we both over-
come any possible limitation introduced by the pretrained
model weights and introduced a mechanism to capture com-
plex connections in a sentence.

D. Optimization And Scoring
In this section, we describe the optimization technique and

the score function that was used to evaluate the proposed
solution.

(a) State generating functions. (b) Word processor flow. (c) Attention mechanism.

Fig. 5: Word processor submodule structures.

For a given image xi, our model generates a caption ŷi =
[ŵj]

n−1
j=0 which has the ground-truth caption yi = [wj]

n−1
j=0 .

After generating the whole caption for an image, we com-
pute the sum of losses for all words and update the model
parameters according to this loss function with the ADAM
optimizer [16] with learning rate 0.003. Loss function that
was used for calculating the word errors is categorical cross-
entropy function which has the following form in (4).

λ(ŵj , wj) = −
W−1∑
k=0

w
(k)
j log ŵ

(k)
j (4)

Where the vectors wj are ground-truth one-hot word vectors
and the vectors ŵj are the generated word vectors that are
obtained after a softmax layer. After calculating the loss for a
single word, losses are summed for all the words in a caption
and then the model parameters are updated. As mentioned
in the data analysis section, we have noted that there is
a high imbalance in the word occurrences in the dataset.
Computing cross-entropy and gradients may result in a limited
performance due to this imbalance. Because the model could
simply ignore the visual features and generate the word ”a”
for all the images even if it is not needed in the caption.
We solve this problem by applying a weighting mechanism
for the losses of all classes. We assign a higher weight for
the rare words and assign low weighting for the loss of the
frequent words. In this way, we aim to solve the imbalance
problem with the weighting mechanism so that the probability
distribution of the words are not affected by the occurrences
of the words. We specifically use the logarithm of the inverse
frequency of the words as their weights. This weight for a
single word, say the ith word, is computed as ai = log mi

M
where mi is the number of occurrences of the the ith word
and M is the total number of words in the whole dataset.
Hence, we modify the loss function with these class weights
as shown in (5). Throughout our experiments, we have seen
that using class weights improved our performance greatly by
not generating the most common words over and over again.

λa(ŵj , wj) = −
W−1∑
k=0

akw
(k)
j log ŵ

(k)
j (5)

We have divided the dataset into three groups, training,
validation and test which have ratios 0.7, 0.2, 0.1. And
instead of computing the derivative for a single sample and
updating, we have used the batch learning system where we
feed 200 images simultaneously and compute the gradients
for all the images. With this setup we have trained our model
for approximately 50 epochs which took around 7 hours on
NVIDIA 1080 Ti GPU. This time consumption is relatively
lower than the training times of many other models in the
literature since some parts of our model consists of pretrained
parts which reduce the training time greatly.

In order to decide when to finish the training session, we are
using an evaluation score. We stop the training procedure after
the training score is not increased for 3 iterations. The score we
are using is the bilingual evaluation understudy (BLEU) score.
BLEU score is basically the average of the n-gram matches.
For unigram, bigram and up to n-gram, all possible n-grams
in the generated sequence are checked if they exist in the
reference sentences. Recall that in the provided dataset we
were given multiple sentences for each image. Hence, we can
easily compute the BLEU score. The reason we are using the
BLEU score is because it is considered as the most successful
evaluation metric in machine translation by many sources.

III. RESULTS

As we have mentioned before, we have used cross-entropy
loss to update our model. We also keep track of the cross-
entropy loss during the training and the validation process.
The loss curve for training and validation is shown in figure
6. We can see that loss converges to a certain score. To test
the significance of the converged level, we have computed
p-value for the loss. We found that the converged value is
below 2.4 with probability 0.95. Therefore, we conclude that
the performance of our approach is upper-bounded by a certain
level.

In addition to the loss curve, we also have BLEU scores
for validation step. We noted that BLEU score increases and
converges to a certain level. Again, to test the significance
of this level, we have computed p-value. We found that the
probability of our algorithm reaching to a level higher than
the 0.45 is 0.89 for unigram. Again, we conclude that the
validation BLEU score of our algorithm is lower bounded by
a certain level.

Fig. 6: Categorical cross entropy score of the proposed model
for every epoch on training and validation sets. As it can be
seen from this figure, cross entropy loss converges to a certain
level. Since the validation loss also does not increase, model
does not overfit the training data.

N-GRAM BLEU Score
1 0.5044
2 0.2817
3 0.1490
4 0.0794

TABLE I: BLEU scores calculated for different lengths of
ngrams.

We have also visualized the generated captions to see
whether they are meaningful sentences, i.e. if they grammat-
ically correct sentences. Some sample images can be seen in
figure 7. As it can be seen from figure , generated captions
have learned some grammatical structures and some special
structures such as generating null token after the end token.
We have checked this property in the captions generated by
our model because we use the BLEU score to evaluate our
model. Although it is considered as the best way to measure
translation performance by many sources, it does not consider
the grammatical structure of the generated captions which we
evaluate manually by visualizing.

IV. DISCUSSION

We have performed analyses on both the data before the
training process and on the model during the training process.
In data analysis part, we have checked the content and prop-
erties of the input images and also the content of the captions.
These analyses have given us insight about the possible prob-
lems that could be encountered in the training. For example,
we have computed histogram of word occurrences which had
pushed us to the idea of weighting the losses for all classes.
We have seen the benefit of this analysis by inspecting the
generated captions.

(a) Model generated the caption
”a man on the skate board on a
ramp.”

(b) Model generated the caption
”a couple of young man playing
soccer on field.”

(c) Model generated the caption
”a man in a x UNK x UNK
shirt holding a wii controller.”

(d) Model generated the cap-
tion ”a bathroom with a sink
x UNK shower tub and toilet.”

Fig. 7: Four example captions generated for the shown figures.
In 7a, we can see that the model generated a meaningful
sentence describing the figure completely. In figure 7b, gener-
ated sentence describes the image content although the model
missed a woman in the picture. In figure 7c, caption describes
the image however, the object that the man is holding is a
phone. Also in figures 7c, 7d, model generated the unknown
token since we do not restrict the model to do so. However,
they do not ruin the generated caption.

Another analysis we have performed is the co-occurrences
of words in the captions. We have performed this analysis
on both the provided dataset and on the Flickr8k dataset. The
outcomes have shown similar results which led us to conclude
that the content of the captions are similar. Though, we failed
to use this information directly like the word occurrences.
We have assumed that the prior co-occurrences could aid the
learning process of the model without requiring an additional
mechanism that connects related words. We have assumed that
the embedding vectors of the Fasttext contains this information
already.

A similar reasoning was followed in the visual feature
extraction part where we have analyzed the most frequent
object occurrences in the captions to gain an insight about
the contents of the images. Again, we have assumed that
contents of the images are similar to the famous ImageNet
dataset which had pretrained convolutional models available.
We assumed that a pretrained model could identify the objects
that are present in the images that are in the provided dataset.

As we have stated earlier, we were aiming to propose a cap-
tioning model that could generate captions related to the input
images and captions that are grammatically correct. However,
we constrained ourselves with memory and time limits. Hence,

we have preferred to use pretrained models. Although we have
achieved our goals, we could further increase this performance
by training our models from scratch. Also, the ability of our
model to connect too distant words in a sentence is somewhat
limited although the captions describe the images. To solve
this problem, we could use multi-layer recurrent network to
overcome this problem. But again, this would require extra
computational resources and time.

To sum up, we have reached our goals that we have stated
in the introduction part with small limitations. The proposed
solution could be improved by adding additional features to
the existing model such as visual attentions, object detection,
training from scratch and more complex training flows.
However, these additional features are out of the scope of
this report which was aimed to propose a captioning model
that could produce describe the contents of the images with
minimal computational and memory resource usage.

REFERENCES

[1] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. IEEE, 2010, pp. 253–256.

[2] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

[3] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional
localization networks for dense captioning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4565–4574.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[7] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[8] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,”
arXiv preprint arXiv:1402.3511, 2014.

[9] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag
problems,” in Advances in neural information processing systems, 1997,
pp. 473–479.

[10] C. Wang, H. Yang, C. Bartz, and C. Meinel, “Image captioning with
deep bidirectional lstms,” in Proceedings of the 24th ACM international
conference on Multimedia. ACM, 2016, pp. 988–997.

[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[12] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[14] A. M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C. Courville, and
Y. Bengio, “Professor forcing: A new algorithm for training recurrent
networks,” in Advances In Neural Information Processing Systems, 2016,
pp. 4601–4609.

[15] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016, pp. 4945–4949.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] “Show Attend Tell Code Implementation,” Feb. 2019.
[Online]. Available: https://github.com/sgrvinod/a-PyTorch-Tutorial-to-
Image-Captioning

[18] “neural-dialogue-metrics/BLEU,” Apr. 2019. [Online]. Available:
https://github.com/neural-dialogue-metrics/BLEU

V. APPENDIX

Below you can find the implementation of the proposed
algorithm that is written in Python 3.7 using PyTorch. We
have implemented and tested the code on the NVIDIA 1080
Ti GPU. We have surveyed some of the blogs to gain insight
about the approaches. Also, to extend our pytorch knowledge,
we have checked some of the online sources and libraries such
as[17] and [18].

./config.py Sun Jan 12 18:54:49 2020 1

1: model_params = {
2: ’drop_prob’: 0.3,
3: ’n_layers’: 2,
4: ’lstm_dim’: 512,
5: ’conv_dim’: 512,
6: ’att_dim’: 512,
7: ’transfer_learn’: True,
8: ’pre_train’: True,
9: }

10:
11: train_params = {
12: ’n_epoch’: 50,
13: ’clip’: 5,
14: ’lr’: 0.003,
15: ’seq_len’: 17,
16: ’eval_every’: 100,
17: ’show_image’: False
18: }
19:
20: batch_params = {
21: ’batch_size’: 16,
22: ’num_works’: 0,
23: ’shuffle’: True,
24: ’use_transform’: True,
25: "input_size": (224, 224)
26: }

./load_data.py Sun Jan 12 18:54:49 2020 1

1: import os
2: import csv
3: import random
4: import pandas as pd
5:
6: from PIL import Image
7:
8:
9: class LoadData:

10: def __init__(self, dataset_path, images_path, **data_params):
11: self.word2int, self.int2word = self.__create_dicts(dataset_path)
12: self.caption_words = self.__create_caption_words(dataset_path)
13: self.captions_int = self.__create_captions_int(dataset_path)
14: self.image_addr = self.__create_image_addr(dataset_path)
15: self.image_paths = self.__create_image_paths(images_path)
16:
17: self.test_ratio = data_params.get(’test_ratio’, 0.1)
18: self.val_ratio = data_params.get(’val_ratio’, 0.1)
19: self.shuffle = data_params.get(’shuffle’, True)
20: self.data_dict = self.__split_data()
21:
22: def __split_data(self):
23: dataset_length = len(self.image_paths)
24: if self.shuffle:
25: random.shuffle(self.image_paths)
26:
27: test_count = int(dataset_length * self.test_ratio)
28: val_count = int(dataset_length * self.val_ratio)
29:
30: data_dict = dict()
31: data_dict[’test’] = self.image_paths[:test_count]
32: data_dict[’validation’] = self.image_paths[test_count:test_count + val_count]
33: data_dict[’train’] = self.image_paths[test_count + val_count:]
34:
35: return data_dict
36:
37: @staticmethod
38: def __create_caption_words(dataset_path):
39: """
40: :param dataset_path: string

41: :return: pd.DataFrame

42: """

43: caption_word_path = os.path.join(dataset_path, ’captions_words.csv’)
44: caption_words = pd.read_csv(caption_word_path)
45: return caption_words
46:
47: @staticmethod
48: def __create_captions_int(dataset_path):
49: """
50: :param dataset_path: string

51: :return: pd.DataFrame

52: """

53: caption_path = os.path.join(dataset_path, ’captions.csv’)
54: captions = pd.read_csv(caption_path)
55: return captions
56:
57: @staticmethod
58: def __create_image_addr(dataset_path):
59: """
60: :param dataset_path: str

61: :return: pd.DataFrame

62: """

63: im_addr_path = os.path.join(dataset_path, ’imid.csv’)

./load_data.py Sun Jan 12 18:54:49 2020 2

64: im_addr = pd.read_csv(im_addr_path)
65: return im_addr
66:
67: @staticmethod
68: def __create_image_paths(images_path):
69: """
70: :param images_path: string

71: :return: list of strings

72: """

73: image_paths = [os.path.join(images_path, f) for f in sorted(os.listdir(images_p
ath))]

74: image_paths.pop(0) # remove .gitignore file from the list
75:
76: # clean the dataset
77: for im_path in image_paths:
78: try:
79: image = Image.open(im_path)
80: image.verify()
81: except OSError:
82: os.remove(im_path)
83: image_paths.remove(im_path)
84:
85: return image_paths
86:
87: @staticmethod
88: def __create_dicts(dataset_path):
89:
90: word2int_csv_path = os.path.join(dataset_path, ’word2int.csv’)
91:
92: data = []
93: with open(word2int_csv_path, mode=’r’) as infile:
94: reader = csv.reader(infile)
95: for row in reader:
96: data.append(row)
97:
98: word2int = {}
99: for word, value in zip(data[0], data[1]):
100: word2int[word] = int(float(value))
101:
102: word2int = {k: v for k, v in sorted(word2int.items(), key=lambda item: item[1])

}
103: int2word = {v: k for k, v in word2int.items()}
104: return word2int, int2word

./train_helper.py Sun Jan 12 18:54:49 2020 1

1: import torch
2: import collections
3: import numpy as np
4: import matplotlib.pyplot as plt
5: import torch.nn.functional as F
6:
7: device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
8:
9:

10: def predict(net, image, x_cap, h=None, top_k=None):
11: image = image.unsqueeze(dim=0)
12:
13: x_cap = torch.tensor([[x_cap]]).to(device)
14:
15: out, h = net(image, x_cap, sentence_len=1, hidden=h)
16: p = F.softmax(out, dim=1).data
17:
18: if torch.cuda.is_available():
19: p = p.cpu()
20:
21: p, top_ch = p.topk(top_k)
22: top_ch = top_ch.numpy().squeeze()
23:
24: p = p.numpy().squeeze()
25: word_int = np.random.choice(top_ch, p=p / p.sum())
26:
27: return word_int, h
28:
29:
30: def sample(net, batch_gen, top_k=None, **kwargs):
31: net.to(device)
32: net.eval()
33:
34: batch_size = batch_gen.batch_size
35: seq_length = kwargs[’seq_len’]
36:
37: im, _, y_cap = next(batch_gen.generate(’validation’))
38: im, y_cap = im.to(device), y_cap.to(device)
39:
40: x_cap = 1 # x_START_
41: captions = []
42: for i in range(batch_size):
43: print(’\rsample:{}’.format(i), flush=True, end=’’)
44: caption = []
45: h = None
46: for ii in range(seq_length):
47: x_cap, h = predict(net, im[i, :], x_cap, h, top_k=top_k)
48: caption.append(x_cap)
49: captions.append(caption)
50:
51: print(’\n’)
52: for i in range(batch_size):
53: caption_str = translate(captions[i], net.embed_layer.int2word)
54: print(’Caption {}: {}’.format(str(i), caption_str))
55: if kwargs[’show_image’]:
56: show_image(im[i], caption_str)
57: plt.show()
58:
59: net.train()
60: return captions
61:
62:
63: def show_image(img, caption_str):

./train_helper.py Sun Jan 12 18:54:49 2020 2

64: if torch.cuda.is_available():
65: img = img.cpu()
66:
67: plt.figure()
68: img = (img.permute(1, 2, 0) - img.min()) / (img.max() - img.min())
69: plt.imshow(img)
70: plt.tight_layout()
71: plt.title(caption_str)
72:
73:
74: def translate(captions, int2word, remove_unk=False):
75: caption_str = ’ ’.join([int2word[cap] for cap in captions])
76: caption_str = caption_str.replace(’x_END_’, ’’).replace(’x_NULL_’, ’’)
77: caption_str = ’ ’.join(caption_str.split())
78: if remove_unk:
79: caption_str = caption_str.replace(’x_UNK_’, ’’)
80: caption_str = ’ ’.join(caption_str.split())
81: return caption_str
82:
83:
84: def calc_class_weights(captions_int):
85: counts = collections.Counter(captions_int.flatten())
86: counts_array = np.array(list(counts.values()))
87:
88: # calculating idf
89: word_count = len(captions_int.flatten())
90: counts_array = np.log(word_count / counts_array)
91: counts_tensor = torch.from_numpy(counts_array).float().to(device)
92:
93: return counts_tensor

./run.py Sun Jan 12 18:54:49 2020 1

1: import pickle
2:
3: from config import model_params, batch_params, train_params
4: from load_data import LoadData
5: from batch_generator import BatchGenerator
6: from models.caption_model import CaptionLSTM
7: from train_helper import calc_class_weights
8: from train_helper import sample
9: from train import train

10: from test import test
11:
12:
13: def main(mode):
14: print(’Loading data...’)
15: data = LoadData(dataset_path=’dataset’,
16: images_path=’dataset/images/’)
17:
18: print(’Creating Batch Generator...’)
19: batch_creator = BatchGenerator(data_dict=data.data_dict,
20: captions_int=data.captions_int,
21: image_addr=data.image_addr,
22: **batch_params)
23:
24: if mode == ’train’:
25: print(’Creating Models...’)
26: caption_model = CaptionLSTM(model_params=model_params,
27: int2word=data.int2word)
28:
29: print(’Starting training...’)
30: class_weights = calc_class_weights(data.captions_int.values)
31: train(caption_model, batch_creator, class_weights, **train_params)
32:
33: elif mode == ’sample’:
34: print(’Loading model...’)
35: model_file = open(’vgg_lstm.pkl’, ’rb’)
36: model = pickle.load(model_file)
37: print(’Creating sample..’)
38: sample(model, batch_creator, top_k=10, seq_len=16, show_image=True)
39:
40: elif mode == ’test’:
41: print(’Loading model’)
42: model_file = open(’vgg_lstm.pkl’, ’rb’)
43: model = pickle.load(model_file)
44: print(’Testing model...’)
45: test(model, batch_creator, top_k=10, seq_len=16)
46:
47:
48: if __name__ == ’__main__’:
49: run_mode = ’test’
50: main(run_mode)

./train.py Sun Jan 12 18:54:49 2020 1

1: import torch
2: import pickle
3: import numpy as np
4: import torch.nn as nn
5: import torch.optim as optim
6:
7:
8: from train_helper import sample
9:

10: device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
11:
12:
13: def train(net, batch_gen, weights, **kwargs):
14: net.train()
15: net.to(device)
16:
17: batch_size = batch_gen.batch_size
18: seq_length = kwargs[’seq_len’]
19:
20: opt = optim.Adam(net.parameters(), lr=kwargs[’lr’])
21: criterion = nn.CrossEntropyLoss(weight=weights)
22:
23: train_loss_list = []
24: val_loss_list = []
25: for epoch in range(kwargs[’n_epoch’]):
26: running_loss = 0
27: for idx, (im, x_cap, y_cap) in enumerate(batch_gen.generate(’train’)):
28:
29: print(’\rtrain:{}’.format(idx), flush=True, end=’’)
30:
31: im, x_cap, y_cap = im.to(device), x_cap.to(device), y_cap.to(device)
32:
33: opt.zero_grad()
34: output, _ = net(im, x_cap)
35:
36: loss = criterion(output, y_cap.view(batch_size * seq_length).long())
37: loss.backward()
38:
39: nn.utils.clip_grad_norm_(net.parameters(), kwargs[’clip’])
40: opt.step()
41:
42: running_loss += loss.item()
43:
44: if (idx+1) % kwargs[’eval_every’] == 0:
45: print(’\n’)
46: val_loss = evaluate(net, batch_gen, weights, **kwargs)
47: print("\nEpoch: {}/{}...".format(epoch + 1, kwargs[’n_epoch’]),
48: "Step: {}...".format(idx),
49: "Loss: {:.4f}...".format(running_loss / idx),
50: "Val Loss: {:.4f}".format(val_loss))
51:
52: # After 15 epochs open last parts of conv model
53: if epoch > 15:
54: net.fine_tune()
55:
56: print(’Creating sample captions’)
57: sample(net, batch_gen, top_k=5, **kwargs)
58: print(’\n’)
59:
60: train_loss_list.append(running_loss / idx)
61: val_loss_list.append(val_loss)
62:
63: loss_file = open(’losses.pkl’, ’wb’)

./train.py Sun Jan 12 18:54:49 2020 2

64: model_file = open(’vgg_lstm.pkl’, ’wb’)
65: pickle.dump([train_loss_list, val_loss_list], loss_file)
66: pickle.dump(net, model_file)
67:
68: print(’Training finished, saving the model’)
69: model_file = open(’vgg_lstm.pkl’, ’wb’)
70: pickle.dump(net, model_file)
71:
72:
73: def evaluate(net, batch_gen, weights, **kwargs):
74: net.eval()
75:
76: batch_size = batch_gen.batch_size
77: seq_length = kwargs[’seq_len’]
78:
79: criterion = nn.CrossEntropyLoss(weight=weights)
80:
81: val_losses = []
82: for idx, (im, x_cap, y_cap) in enumerate(batch_gen.generate(’validation’)):
83:
84: print(’\rval:{}’.format(idx), flush=True, end=’’)
85:
86: im, x_cap, y_cap = im.to(device), x_cap.to(device), y_cap.to(device)
87:
88: output, _ = net(im, x_cap)
89: val_loss = criterion(output, y_cap.view(batch_size * seq_length))
90:
91: val_losses.append(val_loss.item())
92:
93: net.train()
94: return np.mean(val_losses)
95:

./batch_generator.py Sun Jan 12 18:54:49 2020 1

1: from dataset import ImageDataset
2: from torchvision import transforms
3: from torch.utils.data import DataLoader
4:
5:
6: class BatchGenerator:
7: def __init__(self, data_dict, captions_int, image_addr, **kwargs):
8: self.data_dict = data_dict
9: self.captions_int = captions_int

10: self.image_addr = image_addr
11:
12: self.batch_size = kwargs.get(’batch_size’, 16)
13: self.num_works = kwargs.get(’num_works’, 4)
14: self.shuffle = kwargs.get(’shuffle’, True)
15: self.use_transform = kwargs.get(’use_transform’, True)
16: self.input_size = kwargs.get("input_size", (224, 224))
17:
18: self.dataset_dict, self.dataloader_dict = self.__create_data()
19:
20: def generate(self, data_type):
21: """
22: :param data_type: can be ’test’, ’train’ and ’validation’

23: :return: img tensor, label numpy_array

24: """

25: selected_loader = self.dataloader_dict[data_type]
26: yield from selected_loader
27:
28: def __create_data(self):
29: if self.use_transform:
30: im_transform = transforms.Compose([
31: transforms.Resize(self.input_size),
32: transforms.RandomHorizontalFlip(),
33: transforms.ToTensor(),
34: transforms.Normalize(mean=[0.485, 0.456, 0.406],
35: std=[0.229, 0.224, 0.225])
36:])
37: else:
38: im_transform = None
39:
40: im_dataset = {}
41: for i in [’test’, ’train’, ’validation’]:
42: return_all = True if i == ’test’ else False
43: im_dataset[i] = ImageDataset(image_path_names=self.data_dict[i],
44: captions_int=self.captions_int,
45: im_addr=self.image_addr,
46: transformer=im_transform,
47: return_all=return_all)
48:
49: im_loader = {}
50: for i in [’test’, ’train’, ’validation’]:
51: im_loader[i] = DataLoader(im_dataset[i],
52: batch_size=self.batch_size,
53: shuffle=self.shuffle,
54: num_workers=self.num_works,
55: drop_last=True)
56: return im_dataset, im_loader

./models/embed.py Sun Jan 12 18:54:49 2020 1

1: import torch
2: import numpy as np
3: import torch.nn as nn
4:
5: from transformers.word2vec import Word2VecTransformer
6:
7:
8: class Embedding(nn.Module):
9: def __init__(self, int2word):

10: nn.Module.__init__(self)
11:
12: self.int2word = int2word
13: self.vocab_size = len(int2word)
14:
15: self.weights = self.create_embed_tensor()
16: self.embed_dim = self.weights.shape[1]
17: self.embedding = nn.Embedding.from_pretrained(self.weights)
18:
19: def forward(self, captions):
20: """
21: :param captions: (B, S)

22: :return: vectors: (B, S, Vector_dim)

23: """

24: vectors = self.embedding(captions)
25: return vectors
26:
27: def create_embed_tensor(self):
28: transformer = Word2VecTransformer()
29: vectors = []
30: for i in range(self.vocab_size):
31: vec = transformer.transform(self.int2word[i])
32: vectors.append(vec)
33: embed = np.stack(vectors, axis=0)
34: return torch.from_numpy(embed)

./models/attention.py Sun Jan 12 18:54:49 2020 1

1: import torch.nn as nn
2:
3:
4: class Attention(nn.Module):
5: def __init__(self, conv_dim, lstm_dim, att_dim):
6: super(Attention, self).__init__()
7: self.conv_att = nn.Linear(conv_dim, att_dim)
8: self.lstm_att = nn.Linear(lstm_dim, att_dim)
9: self.full_att = nn.Linear(att_dim, 1)

10: self.relu = nn.ReLU()
11: self.softmax = nn.Softmax(dim=1)
12:
13: def forward(self, conv_out, lstm_hidden):
14: """
15: Forward propagation.

16: :param conv_out: encoded images, a tensor of dimension (batch_size, num_pixels,

 encoder_dim)

17: :param lstm_hidden: previous decoder output, a tensor of dimension (batch_size,

 decoder_dim)

18: :return: attention weighted encoding, weights

19: """

20: att1 = self.conv_att(conv_out) # (batch_size, num_pixels, attention_dim)
21: att2 = self.lstm_att(lstm_hidden) # (batch_size, attention_dim)
22: att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_s

ize, num_pixels)

23: alpha = self.softmax(att) # (batch_size, num_pixels)
24: attention_weighted_encoding = (conv_out * alpha.unsqueeze(2)).sum(dim=1) # (ba

tch_size, encoder_dim)

25:
26: return attention_weighted_encoding

./models/vgg.py Sun Jan 12 18:54:49 2020 1

1: import torch.nn as nn
2: import torchvision.models as models
3:
4:
5: class VGG16(nn.Module):
6: def __init__(self, model_params):
7: super(VGG16, self).__init__()
8: self.transfer_learn = model_params.get(’transfer_learn’, True)
9: self.pre_train = model_params.get(’pre_train’, True)

10:
11: # init model
12: self.vgg = models.vgg16(pretrained=self.pre_train)
13:
14: modules = list(self.vgg.children())[:-2]
15: self.vgg = nn.Sequential(*modules)
16:
17: self.initialize_model()
18:
19: def forward(self, image):
20: return self.vgg(image)
21:
22: def initialize_model(self):
23: # close the parameters for training
24: if self.transfer_learn:
25: for param in self.vgg.parameters():
26: param.requires_grad = False
27:
28: def fine_tune(self):
29: for c in list(self.vgg.children())[5:]:
30: for p in c.parameters():
31: p.requires_grad = True

./models/caption_model.py Sun Jan 12 18:54:49 2020 1

1: import torch
2: import torch.nn as nn
3:
4: from models.embed import Embedding
5: from models.attention import Attention
6: from models.vgg import VGG16
7:
8: device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
9:

10:
11: class CaptionLSTM(nn.Module):
12: def __init__(self, model_params, int2word):
13: super(CaptionLSTM, self).__init__()
14: self.drop_prob = model_params.get(’drop_prob’, 0.3)
15: self.n_layers = model_params.get(’n_layers’, 2)
16: self.lstm_dim = model_params.get(’lstm_dim’, 512)
17: self.conv_dim = model_params.get(’conv_dim’, 512)
18: self.att_dim = model_params.get(’att_dim’, 512)
19:
20: self.embed_layer = Embedding(int2word)
21: self.embed_dim = self.embed_layer.embed_dim
22: self.vocab_dim = self.embed_layer.vocab_size
23:
24: self.conv_model = VGG16(model_params)
25: self.attention = Attention(self.conv_dim, self.lstm_dim, self.att_dim)
26: self.lstm = nn.LSTM(input_size=self.embed_dim + self.lstm_dim,
27: hidden_size=self.lstm_dim,
28: num_layers=self.n_layers,
29: dropout=self.drop_prob,
30: batch_first=True)
31: self.drop_out = nn.Dropout(self.drop_prob)
32: self.fc = nn.Linear(self.lstm_dim, self.vocab_dim)
33:
34: self.lin_h = nn.Linear(self.conv_dim, self.lstm_dim)
35: self.lin_c = nn.Linear(self.conv_dim, self.lstm_dim)
36:
37: def forward(self, image, x_cap, sentence_len=17, hidden=None):
38: """
39: :param image:

40: :param x_cap: b, seq_len

41: :param sentence_len: int

42: :param hidden: tuple((num_layers, b, n_hidden), (num_layers, b, n_hidden))

43: :return:

44: """

45: batch_size = x_cap.shape[0]
46:
47: image_vec = self.conv_model(image)
48: image_vec = image_vec.view(batch_size, -1, self.conv_dim)
49:
50: if hidden is None:
51: h, c = self.init_hidden(image_vec)
52: # expand it for each layer of image
53: h = h.expand((self.n_layers, batch_size, self.lstm_dim)).contiguous()
54: c = c.expand((self.n_layers, batch_size, self.lstm_dim)).contiguous()
55: else:
56: h, c = hidden
57:
58: sentence = []
59: for word_idx in range(sentence_len):
60: weigted_conv_output = self.attention(image_vec, h[0, :])
61: embed = self.embed_layer(x_cap[:, word_idx]).float()
62: lstm_in = torch.cat([embed, weigted_conv_output], dim=1).unsqueeze(1)
63: r_out, (h, c) = self.lstm(lstm_in, (h, c))

./models/caption_model.py Sun Jan 12 18:54:49 2020 2

64:
65: out = self.fc(self.drop_out(r_out))
66: sentence.append(out)
67:
68: output = torch.cat(sentence, dim=1)
69: output = output.contiguous().view(-1, self.vocab_dim)
70: return output, (h, c)
71:
72: def init_hidden(self, image_vec):
73: image_vec = image_vec.mean(dim=1)
74: h = self.lin_h(image_vec)
75: c = self.lin_c(image_vec)
76: return h, c
77:
78: def fine_tune(self):
79: self.conv_model.fine_tune()
80:

./test.py Sun Jan 12 18:54:49 2020 1

1: import torch
2: import numpy as np
3:
4: from transformers.bleu import compute_bleu
5: from train_helper import predict, translate
6:
7: device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
8:
9:

10: def test(net, batch_gen, top_k, **kwargs):
11: net.eval()
12: net.to(device)
13:
14: batch_size = batch_gen.batch_size
15: seq_length = kwargs[’seq_len’]
16:
17: translate_caps = []
18: referance_caps = []
19: for idx, (im, x_cap, y_cap) in enumerate(batch_gen.generate(’test’)):
20:
21: print(’\rtest:{}’.format(idx), flush=True, end=’’)
22:
23: im, x_cap, y_cap = im.to(device), x_cap.to(device), y_cap.to(device)
24:
25: word_int = 1 # x_START_
26: for i in range(batch_size):
27: caption = []
28: h = None
29: for ii in range(seq_length):
30: word_int, h = predict(net, im[i, :], word_int, h, top_k=top_k)
31: caption.append(word_int)
32: caption = translate(caption, net.embed_layer.int2word)
33: translate_caps.append(caption.split())
34:
35: for i in range(batch_size):
36: y_trimed = trim_empty_rows(y_cap[i].cpu().numpy())
37: y_str = [translate(y_trimed[ii], net.embed_layer.int2word).split() for ii i

n range(y_trimed.shape[0])]
38: referance_caps.append(y_str)
39:
40: print(’\n’)
41: for i in range(1, 5):
42: bleu, geo_mean, bp = compute_bleu(referance_caps, translate_caps, max_order

=i)
43: print(’BLEU: {}, Geometric_mean: {}, BP:{}’.format(bleu, geo_mean, bp))
44:
45: print(’\n’)
46: for i in range(1, 5):
47: bleu, geo_mean, bp = compute_bleu(referance_caps, translate_caps, max_order=i)
48: print(’BLEU: {}, Geometric_mean: {}, BP:{}’.format(bleu, geo_mean, bp))
49:
50:
51: def trim_empty_rows(y_cap):
52: return y_cap[˜np.all(y_cap == 0, axis=1)]
53:

./dataset.py Sun Jan 12 18:54:49 2020 1

1: import numpy as np
2:
3: from torch.utils.data import Dataset
4: from PIL import Image
5: from PIL import ImageFile
6:
7: ImageFile.LOAD_TRUNCATED_IMAGES = True
8:
9:

10: class ImageDataset(Dataset):
11: def __init__(self, image_path_names, captions_int,
12: im_addr, transformer, return_all=False):
13: self.image_path_names = image_path_names
14: self.captions_int = captions_int
15: self.im_addr = im_addr
16: self.transformer = transformer
17: self.return_all = return_all
18:
19: def __len__(self):
20: return len(self.image_path_names)
21:
22: def __getitem__(self, idx):
23:
24: im_path = self.image_path_names[idx]
25: image_name = im_path.split(’/’)[-1]
26: image_id = int(image_name.split(’.’)[0]) + 1
27:
28: caption_idx = self.im_addr[self.im_addr[’im_addr’] == image_id].index
29: if self.return_all:
30: # not all images have 5 captions
31: train_captions = np.zeros((6, 17))
32: select_cap = self.captions_int.iloc[caption_idx].values
33: train_captions[:select_cap.shape[0], :select_cap.shape[1]] = select_cap
34: else:
35: caption_idx = np.random.choice(caption_idx.values)
36: train_captions = self.captions_int.iloc[caption_idx].values
37:
38: # Target captions are one step forward of train captions
39: target_captions = np.roll(train_captions, -1)
40: if self.return_all:
41: target_captions[:, -1] = 0
42: else:
43: target_captions[-1] = 0
44:
45: image = Image.open(im_path)
46: image = image.convert(’RGB’)
47: if self.transformer is not None:
48: image = self.transformer(image)
49:
50: return image, train_captions, target_captions

./transformers/bleu.py Sun Jan 12 18:54:49 2020 1

1: # Copyright 2017 Google Inc. All Rights Reserved.

2: #

3: # Licensed under the Apache License, Version 2.0 (the "License");

4: # you may not use this file except in compliance with the License.

5: # You may obtain a copy of the License at

6: #

7: # http://www.apache.org/licenses/LICENSE-2.0

8: #

9: # Unless required by applicable law or agreed to in writing, software

10: # distributed under the License is distributed on an "AS IS" BASIS,

11: # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

12: # See the License for the specific language governing permissions and

13: # limitations under the License.

14: # ==

15:
16: """Python implementation of BLEU and smooth-BLEU.

17: This module provides a Python implementation of BLEU and smooth-BLEU.

18: Smooth BLEU is computed following the method outlined in the paper:

19: Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic

20: evaluation metrics for machine translation. COLING 2004.

21: """

22:
23: import collections
24: import math
25:
26:
27: def _get_ngrams(segment, max_order):
28: """Extracts all n-grams upto a given maximum order from an input segment.
29: Args:

30: segment: text segment from which n-grams will be extracted.

31: max_order: maximum length in tokens of the n-grams returned by this

32: methods.

33: Returns:

34: The Counter containing all n-grams upto max_order in segment

35: with a count of how many times each n-gram occurred.

36: """

37: ngram_counts = collections.Counter()
38: for order in range(1, max_order + 1):
39: for i in range(0, len(segment) - order + 1):
40: ngram = tuple(segment[i:i+order])
41: ngram_counts[ngram] += 1
42: return ngram_counts
43:
44:
45: def compute_bleu(reference_corpus, translation_corpus, max_order=4,
46: smooth=False):
47: """Computes BLEU score of translated segments against one or more references.
48: Args:

49: reference_corpus: list of lists of references for each translation. Each

50: reference should be tokenized into a list of tokens.

51: translation_corpus: list of translations to score. Each translation

52: should be tokenized into a list of tokens.

53: max_order: Maximum n-gram order to use when computing BLEU score.

54: smooth: Whether or not to apply Lin et al. 2004 smoothing.

55: Returns:

56: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram

57: precisions and brevity penalty.

58: """

59: matches_by_order = [0] * max_order
60: possible_matches_by_order = [0] * max_order
61: reference_length = 0
62: translation_length = 0
63: for (references, translation) in zip(reference_corpus,

./transformers/bleu.py Sun Jan 12 18:54:49 2020 2

64: translation_corpus):
65: reference_length += min(len(r) for r in references)
66: translation_length += len(translation)
67:
68: merged_ref_ngram_counts = collections.Counter()
69: for reference in references:
70: merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
71: translation_ngram_counts = _get_ngrams(translation, max_order)
72: overlap = translation_ngram_counts & merged_ref_ngram_counts
73: for ngram in overlap:
74: matches_by_order[len(ngram)-1] += overlap[ngram]
75: for order in range(1, max_order+1):
76: possible_matches = len(translation) - order + 1
77: if possible_matches > 0:
78: possible_matches_by_order[order-1] += possible_matches
79:
80: precisions = [0] * max_order
81: for i in range(0, max_order):
82: if smooth:
83: precisions[i] = ((matches_by_order[i] + 1.) /
84: (possible_matches_by_order[i] + 1.))
85: else:
86: if possible_matches_by_order[i] > 0:
87: precisions[i] = (float(matches_by_order[i]) /
88: possible_matches_by_order[i])
89: else:
90: precisions[i] = 0.0
91:
92: if min(precisions) > 0:
93: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
94: geo_mean = math.exp(p_log_sum)
95: else:
96: geo_mean = 0
97:
98: ratio = float(translation_length) / reference_length
99:
100: if ratio > 1.0:
101: bp = 1.
102: else:
103: bp = math.exp(1 - 1. / ratio)
104:
105: bleu = geo_mean * bp
106:
107: return bleu, geo_mean, bp

./transformers/word2vec.py Sun Jan 12 18:54:49 2020 1

1: import os
2: import pickle
3: import numpy as np
4: from gensim.models import KeyedVectors
5:
6:
7: class Word2VecTransformer:
8: def __init__(self):
9: self.model_path = ’embedding/word2vec.pkl’

10: self.vector_path = ’embedding/word2vec.vec’
11:
12: if os.path.isfile(self.model_path):
13: print(’loading pretrained embeddings from pickle’)
14: model_file = open(self.model_path, ’rb’)
15: self.model = pickle.load(model_file)
16: else:
17: self.model = KeyedVectors.load_word2vec_format(self.vector_path, binary=Fal

se, unicode_errors=’replace’)
18: model_file = open(self.model_path, ’wb’)
19: pickle.dump(self.model, model_file)
20:
21: self.vector_size = self.model.vector_size
22:
23: def transform(self, x):
24: if x in self.model.wv:
25: r = self.model.wv[x]
26: elif x.lower() in self.model.wv:
27: r = self.model.wv[x.lower()]
28: else:
29: r = self.create_random_vec()
30: return r
31:
32: def create_random_vec(self):
33: out_of_vocab_vector = np.random.rand(1, self.vector_size)[0]
34: out_of_vocab_vector = out_of_vocab_vector - np.linalg.norm(out_of_vocab_vector)
35: return out_of_vocab_vector

