
CS559 Homework
Estimation of Facial Attractiveness Level using

TensorFlow
Selim Furkan Tekin

21501391
Fatih İlhan
21401801

Abstract—In this homework, we design and train a deep
neural network for facial attractiveness level estimation. In
particular, we develop an architecture based on convolution,
pooling, activation and fully-connected layers. We analyze the
performance of our model over a preprocessed facial image
dataset with attractiveness level annotations. In this report,
we describe our architecture, training procedure and obtained
results on the given dataset. The architecture can reach 0.42 and
0.50 mean absolute error in validation and test sets respectively.

I. DATA ANALYSIS AND PREPROCESSING

In this section, we give the details of our analysis on
the given dataset before starting to work on model design.
Data analysis is a crucial step before designing a deep neural
network since the statistics of data can significantly affect the
design choices. To this end, we perform certain analyses on
training and validation sets of the given SUCT dataset [1].
First, we display some randomly selected images and the mean
of all images in the datasets. In the following figure, we display
randomly selected images from the dataset:

(a) Training (b) Validation

Fig. 1: Randomly selected images from the given dataset

Thankfully, the dataset is preprocessed. The facial images are
cropped properly, and irrelevant regions are masked. Their
rotational alignment is also handled. There is no significant
pose or illumination difference between samples. In addition,
preprocessing is conducted for both training and validation
sets. Therefore, we do not need to perform any preprocessing
further except scaling the images into values between 0 and
1.

In addition, we analyze the mean and variance images of
the given dataset. We display the mean images of training

and validation sets to see if there is any significant difference
between training and validation sets. These images are dis-
played in Fig. 2. The mean images of training and validation
sets are almost the same visually. Therefore, the feature space
distribution difference between training and validation sets is
not significant. This fact strengthens our motivation to apply
deep learning for this task, since the learned model in the
training set will be able to represent the validation set, and
hopefully test set.

(a) Training (b) Validation

Fig. 2: Mean images of the given dataset

We also analyze the distribution of attractiveness levels using
a histogram. In Fig. 3, we display the number of samples
from each level in training and validation sets. We observe
that the imbalance between levels is significant. In particular,
lower attractiveness levels are more common than higher
attractiveness levels. However, this distribution stays same in
the validation set, which shows that the dataset is splitted into
sets considering the level distribution.

II. DESIGN AND TRAINING PROCEDURE

In this section, we describe the design and training pro-
cedure of our deep convolutional network. Before starting
random hyperparameter search and finetuning, we first deter-
mine the loss function, optimizer, model structure, and layer
types. Since we do not have enough time and computational
resources to try all possible design possibilities, we need to
give certain main design choices.

First, we determine our loss function, optimizer, and the
initialization method. In the homework description, it is men-
tioned that the evaluation will be conducted in terms of mean



(a) Training (b) Validation

Fig. 3: Histogram of attractiveness levels

absolute error. Since this is a regression task in which we want
greater errors to be penalized heavier, we use mean squared
loss while optimization. We train our models and perform
early stopping based on this loss. However, we evaluate and
select the models based on their mean absolute errors in the
validation set. As requested in the homework description, we
stick with Adam optimizer, which has shown fast convergence
in almost all of the convolutional neural network designs in
the literature. Although there are several variants of it, we use
Adam optimizer with its default form, and default decay rates
in Tensorflow. For the initial set of experiments, we utilize
Xavier initialization to prevent the weight distribution of layers
from disrupting. Since we expect this method to perform
better than random initialization through keeping the mean and
variances of weights in reasonable ranges without saturation,
it will expose the potential of models more successfully for the
initial experiments. However, we also try random initialization
at the last finetuning stage since the performance differences
in initial experiments were not very significant.

Once determining the objective function and initialization,
we start to design our model. Instead of trying numerous
models with different number of layers/filters, and various
convolutional and pooling filter sizes/strides, we follow a
systematic procedure. First, we aim to overfit to the training
set with a reasonably small model. Since we plan to regularize
and modify it later, overfitting at this stage is just a proof
of validity of the general structure of our model. After a fast
manual search, we have ended with a model with the structure
described in Table I.

This model consists of 4 convolutional layers, 2 max-
pooling layers, and 2 dense layers. For convolutional layers,
we use the ”SAME” option instead of ”VALID” to include
padding and prevent the outermost pixels to drop after each
convolution. In additio, we use leaky relu with a slope of
α = 0.01 after each convolutional layer and the first dense
layer. We use the standard relu function at the output of
our model. By using leaky relu, we aim to continue gradient
flow even if there are negative values at the output of the
layers. We also apply batch normalization after activations of
convolutional layers. Without a fine search, we set the learning
rate to 2e − 3, and mini-batch size of 32. We observed that
training was very noisy if the mini-batch size is small and
slow if it is very high. Since we want to overfit at this step,

Layer Filter Size Stride # Filters Output Size
conv 1 5 3 16 ?x?x16
conv 2 5 1 16 ?x?x16

max pool 1 5 1 - ?x?x16
conv 3 3 3 32 ?x?x32
conv 4 3 1 32 ?x?x32

max pool 2 3 1 - 9x9x32
flatten - - - 2592

dense 1 - - - 256
dense 2 - - - 1

TABLE I: Initial model structure

Layer Filter Size Stride # Filters Output Size
conv 1 5 3 8 ?x?8
conv 2 5 1 16 ?x?x16

max pool 1 5 2 - ?x?x16
conv 3 3 1 16 ?x?16
conv 4 3 1 16 ?x?16

max pool 2 3 2 - 7x7x16
flatten - - - 784

dense 1 - - - 64
dense 2 - - - 1

TABLE II: Final model structure

we do not any regularization. In this setup, the training MSE
loss drops to 0.18 and 0.11 around 100th and 300th.
After observing that the proposed structure given in Table I

is suitable for the given task, we have added early stopping
which stops training if the mean squared loss in the validation
set does not decrease 5 consecutive epochs. With this setup,
our rounded mean absolute error was 0.79. To see the effect
of batch normalization, we have run the same setup without
it and as expected, we have observed a more noisy loss decay
during the training and the validation score was around 0.88.
Therefore, we apply batch normalization for all experiments
after this point.

Until this stage, our only regularization technique was
early stopping. However since our dataset is not large and
the training error is much lower than validation loss during
training, we have added L2 regularization (λ = 1e− 3) for all
layers and dropout (0.1) for the dense layers. After stronger
regularization, our validation loss has decreased to 0.74.
Then, we have tried slightly deeper and wider versions of this
model by increasing the number of filters and layers in our
network. We have tried several variants with additional two
layers and/or doubled number of filters however, we could not
obtain any significant improvement. Moreover, the network
has become unstable and validation loss plots were noisier.

Since we could not obtain any performance gain, we have
tried a simpler version with fewer filters and pooling strides
as described in Table II. This model was able to drop the
validation loss to 0.69 with the same optimization and reg-
ularization parameters. Decreasing the number of layers was
not helpful, therefore we select this configuration as our final
model structure. To observe the effect of our choices over the
performance, we provide the results in Table III. Note that
these models are not fine-tuned. In the following section, we
describe the hyperparameter search and finetuning procedure



for learning rate, batch size, regularization parameters, and
initialization method.

Best Model No-BN No-Xavier No-Reg Complex Simple
0.69 0.88 0.71 0.74 0.71-0.79 0.74-0.77

TABLE III: Rounded MAE in the validation set for the first
experiment stage. Best configuration, no batch normalization,
random initialization, no regularization, more complex net-
work and simpler network results.

III. RESULTS

In the previous section, we have determined the structure
of our model, objective function and the optimization method.
In this section, we show the final results in the validation and
test sets after finetuning. Furthermore, we show the effects of
parameters on the performance by comparing their results and
monitoring the learning curves.

A. Hyperparameter Search and Finetuning

In the first step of parameter search, we have decided on
a search range for each parameter. Thus, we have monitored
the decrease in MSE loss in the validation set to see which
parameters work better and consistently. For example, for the
learning rate we have selected four possible values in log base.
We decreased the upper bound of the search range, if the loss
oscillates too much, and increased the lower bound of the
search range if the loss decreases too slowly.

For the regularization parameters, we have visually mon-
itored the loss curve and investigate the gap between the
validation and training curves. If there is a large gap, we
strengthen our regularization by increasing λ parameter in
L2 regularization and drop-out rate. Batch normalization has
provided better results along with stability and robustness in
parameter search, thus we have applied batch regularization
between every convolutional layer.

After determining the search ranges, we have conducted a
grid search to obtain different combinations of parameters.
Then we performed experiments for each combination after
shuffling the configurations randomly. Early stopping has
increased the speed of experiments and allowed us to perform
more experiments in a limited time.

Fig. 4 shows the learning curve of the final model. Table
IV shows the parameters and the results for the final model.
Among 240 experiment results, the configuration with the
smallest validation l1 loss is selected as the best model
configuration. We have obtained 0.50 MAE on the test set
with the best model. The learning curve shows that learning
rate is tuned well since it has a sharp initial decrease and
reaches a stable and low loss value. In addition, the gap
between train and validation losses is not significant, since we
have used early stopping so that the model is stopped when
validation loss had stopped decreasing. Fig. 5 shows sample
output predictions taken from validation set.

Fig. 4: Learning curve of final model

Fig. 5: Predictions for the samples taken from the test set.
Sample labeled as 8 could be biased since sample is a celebrity.
We also observe that similing faces have higher scores, so the
first image is predicted as more attractive and the last image
is predicted as less atractive.

TABLE IV: PARAMETER VALUES FOR FINAL MODEL

Parameter Name Parameter Value
Batch size 64
Learn rate 0.0003
optimizer Adam
Init type Random
Loss type l2
Alpha 0.01
Batch Regularization True
Lambda 0.001
Drop-out Prob 0.1
Stop tolerance 5
Validation Loss 0.42

B. Parameter Effects on the Performance

1) Batch Normalization: After every convolutional layer,
we have implemented a batch normalization layer. This layer
behaves differently during training and prediction stages. In



training, activations are normalized with the mean, µ and
variances, σ2 of the mini batch samples. Then, resulting
activations are scaled by γ and shifted with an offset β.

x =
γ(x− µ)

σ
+ β (1)

Scale and offset parameters are trained during training.
In addition, mean and variance parameters are updated by
exponential moving average, which averages with a decay rate
of 0.5. Mean and variance updates are not applied during
test, and the averaged values from training are used. Fig.
6 shows the effect of batch normalization. Batch normaliza-
tion decreases the dependence on initialization. Furthermore,
model converges faster to a lower loss value. This shows the
improvement in gradient flow through the network.

Fig. 6: Effect of batch normalization is shown with learning
curves.

2) Weight Initialization: We have investigated the param-
eter initialization effect by monitoring the first few epoch
losses. We observed that Xavier initialization results in a
lower loss compared to the random initialization. Fig. 7
shows the learning curves of the experiments with the best
configurations, but the initialization methods are different. In
both experiments, batch normalization is turned off to see the
effect of different initialization more explicitly.

Fig. 7: Effect of initialization is shown with learning curves.

C. Regularization Effect

We have investigated the effect of regularization on learning
by monitoring the loss curves as in the previous sections.
To this end, we compare two experiment results with two
different configurations. One configuration has exactly the
same paremeters of best model, and other experiment lacks
regularization i.e no batch normalization, no drop-out and no
L2 regularization. This combination can be seen on Figure
8. We observed that with regularization, model reached lower
loss with few epochs. However, the fact that our model is not
deep decreases the need for regularization. So, the regulariza-
tion does not drastically improve the validation performance
although it still helps to prevent overfitting after some epochs.
In particular, dropout helps to regularize the last dense layers.

Fig. 8: Effect of regularization is shown with learning curves.

IV. CONCLUSION

In this work, a deep learning model is implemented to
estimate facial attractiveness. First, we have conducted ex-
ploratory data analysis on training and validation sets. Then,
we have decided on whether we should perform a preprocess-
ing step or not. The images were already cropped according
to landmarks, and adjusted in terms of pose and illumination.
Thus, no preprocessing is performed except scaling their
values to 0-1 range. Second, we have designed our model
architecture and decided on the loss type, optimization, and
regularization techniques. Then, we have performed hyper-
parameter search and finetuned our model. Finally, we have
investigated the effect of batch normalization, regularization
and weight initialization.

We have observed that both batch normalization and regular-
ization (L2 and dropout) improves the results. Although we
have observed certain improvements in Xavier initialization,
our best model uses random initialization. The reason behind
this could be the randomness of initialization and the fact that
batch normalization decreases the effect of initialization on
performance.

Finally, we have accomplished the task with a simple yet
efficient model. The architecture could reach 0.42 MAE in the
validation and 0.5 MAE in the test sets, which is applicable
for a real-life application.



REFERENCES

[1] D. Xie, L. Liang, L. Jin, J. Xu, and M. Li, “Scut-fbp: A benchmark dataset
for facial beauty perception,” in 2015 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 1821–1826, IEEE, 2015.


