
Shazam Signature Representation of Audio
for Documents

Ricardo Román-Brenes
Bilkent University
Ankara, Turkey

ricardo@bilkent.edu.tr

Selim Furkan Tekin
Bilkent University
Ankara, Turkey

tekin@ee.bilkent.edu.tr

Syed Asad Shah
Bilkent University
Ankara, Turkey

asad.shah@bilkent.edu.tr

Halil Ibrahim Kuru
Bilkent University
Ankara, Turkey

ibrahim.kuru@bilkent.edu.tr

Asma Jodeiri
Bilkent University
Ankara, Turkey

asma.jodeiri@bilkent.edu.tr

ABSTRACT
An text document search engine based on Shazam audio fingerprint
algorithm was developed. It is capable of matching a query by using
a fragment of the original document’s content. The Google Text
to Speech API1 service, as well as a raw-to-audio method are used
to transforms text into audio. The audio fingerprints method of
Shazam is used to generate signature of a text from the audio file.
The engine achieved a 60% match hit ratio when using queries of
around 80% of the original file. The system is scalable; storage and
computationally efficient as the search is performed using signature
instead of the document itself.

KEYWORDS
Shazam, text query, matching, audio fingerprint

1 INTRODUCTION
Sound is a pressure wave with distinct frequencies and human ear
perceive it in 1-D wave-form, convert it into frequency dependent
nerve firing and the auditory cortex of the brain will do the further
refinement. Whereas computer seen it as sinusoidal waveform.
The attributes which makes sound musical are pitch, timbre and
loudness.

Shazam is a widely known and used service for music identifica-
tion 2. The system is based on converting the documents (in this
case, songs) into a signature in order to reduce the dimensionality
of each input [6]. A database is built using these signatures for
just as many songs as possible. When a query is performed, the
song is converted as well and checked against the database. Since
comparing the signature of a song is a lot easier than comparing
the song itself, the system responds quickly. The signatures are
different enough to be able to avoid incorrect identification, yet
noise, or bad quality of a recording might affect the results in a
negative way.

Using this as base, content-based document query search can also
be performed by converting the text into audio and then generate
signature of it, loaded into a database where they can be queried.

The motivation behind this project is to explore how algorithms
that were built for different purposes can be applied to different
data with little effort and hopefully with good rate of success. This

1https://gtts.readthedocs.io/en/latest/
2http://www.Shazam.com

type of fingerprinting system might help build document search
engines that respond faster than the standard databases.

Throughout the years, the Shazam[6] algorithm has also been
used in fields other than music retrieval. A project[2] has used
a fingerprint algorithm similar to Shazam for face recognition to
increase performance. This approach creates fingerprints of faces
and it is more capable of dealing with larger degree of variability in
ambient lighting, pose, expression, occlusion, face size, and distance
from the camera than other algorithms. In another research[3], the
Shazam algorithm is being used for retrieving movie information
and optimization based on movie audio which improves the average
retrieval accuracy of the algorithm by 0.82%.

2 OBJECTIVE
The main objective of this work is to study how the algorithm
behind the service Shazam would perform when applied to text
documents in an Information Retrieval System (IRS).

In order to achieve this, several steps must be taken, which are
described in the following section.

3 METHODOLOGY
For Shazam’s audio fingerprinting to work on text files, first said
files were converted to audio. After that, all the collection of docu-
ments will be transformed into their fingerprints and stored. Lastly,
from each document 3 types of queries were generated and matched
against the collection to check the system’s peroformance.

The general workflow of this process is shown in figure 1. The
finer points of the dataset, conversion, fingerprinting and UI pre-
sentation will be laid out below.

3.1 Text-to-Audio
3.1.1 Google Text to Speech. We initially start to convert each
abstract to its audio file. We write a script that parses 500 PubMed
Central Full Text Test Collection. For each abstract, the PMID is a
unique identifier. Therefore, we extract PMID part as the unique
identifier of the audio files. Then, we extract the abstract text for
each PMID. Our script uses an API to convert abstracts into audio
and save them as ’.mp3’ files.

We have a couple of APIs currently available for text-to-speech
conversion in Python language. The Google Text to Speech API3,

3https://gtts.readthedocs.io/en/latest/

https://gtts.readthedocs.io/en/latest/
http://www.Shazam.com
https://gtts.readthedocs.io/en/latest/


cs533 Information Retrieval, Spring 2021, Bilkent University Tekin, Román-Brenes, Kuru, Shah and Jodeiri

Figure 1: General flow of the IR system.

also known as the gTTS API, is one of these APIs. gTTS is a simple
tool that transforms text into audio files and we save them as mp3
files. The gTTS API provides text-to-speech conversion in a variety
of languages such and English, French, German, Mandarin and even
Turkish. We can also change the speed of speech as either fast of
slow.

However we should note that it gets HTTP request error after
some number of requests since it sends a request to Google Cloud
for conversion. Therefore, we could not run our script end-to-end.
We split the abstracts into chunks, each containing 50 abstracts.
We run script for the a chunk, save abstracts as mp3 files, and then
wait around 1 hour. Then, we continue with another chunk so that
we did not get HTTP error.

Figure 2 shows a sample audio in time and frequency domain.
This audio is speech of a woman robot voice reading the input text.
Thus, we expect the frequency range between 180 - 250 Hertz. How-
ever, as in figure 2 our speech signal also includes high frequencies.

Figure 3 shows a spectrogram of a sample audio as a 2-D array
with amplitude as a function of frequency and time. In spectrogram,
X-axis represents time, Y-axis represents frequency and the density
of the shading represents the amplitude.

3.1.2 Google Text to Speech. Another method of generating the
audio files from text was implemented using a simple byte conver-
sion. The text is converted to the integer ASCII (or Unicode) values
of each character and passed to Numpy 4 to generate an array. This
array is later interpreted as data by Pydub 5 which in turn adds the
header of an MP3 file. These “audio” files have no real audio data
hence no sound is produced when played.

4http://https://numpy.org/
5http://pydub.com/

Figure 2: Sample audio in time and frequency domain. Sig-
nal contains wide range of frequencies from 100-1000 Hertz
and there is high dense of signals located in range 150-350
Hertz and 450-600 Hertz.

3.2 Audio fingerprinting
Audio or acoustic fingerprint works by extracting relevant char-
acteristics in an audio fragment. Presented afterwards with an
unidentified piece of audio content, the characteristics of that piece
are calculated and matched against those previously stored [5].

3.2.1 Features of audio Fingerprinting mechanism:

• The fingerprint generation and searching process of an audio
for the finest match from the large database of fingerprints
should be very efficient.

• The document identification process should be accurate.
• It should be expandable enough to maintain the large finger-
print database.

http://https://numpy.org/
http://pydub.com/


Shazam Signature Representation of Audio
for Documents cs533 Information Retrieval, Spring 2021, Bilkent University

Figure 3: spectrogram of a sample audio

Figure 4: Amplitude of FFTs

• Its performance is measured by number of wrong and correct
identifications.

3.2.2 Fingerprinting generation mechanism : Aswe know Shazam’s
fingerprinting method only work with frequencies, we convert the
analog signal into digital and then use Fourier Transform to convert
function of time into function of frequencies. In order to generate
the audio fingerprint of a document, we read the obtained sampling
frequency and build a spectrogram from the obtained sampling
frequency by applying the FFT (fast fourier transform) method
on the digital sound to reduce the spectrum leakage for a good
frequency resolution.

In particular, Shazam, exploits the highest peaks in the audio
spectrogram to store, the frequency, the time and the intensity
of those peaks, effectively reducing both dimensionality and size
of each audio piece [6] [4].When we compare spectrograms with
the other speech signals, we noticed that, points with high am-
plitudes can be representative for the text audio. Thus, we select

Figure 5: spectrogram and Anchor points.

the points with the highest amplitude as our anchors for the hash-
ing. We follow the same procedure in Shazam algorithm as dis-
cussed below. The code for our hashing and analysis are available
at https://github.com/rica01/BU-spring2021-cs533.

We need to keep the loudest notes from different frequency
bands of an audio which requires filtering. For that, we perform
the 512 bins histogram inside 6 logarithmic bands for each FFT
results. For each band, we kept the strongest bin of frequencies and
then compute the average value of these 6 strongest bins. We keep
the bins whose values are greater than the mean as you can see in
figure 4.

• very low sound band (from bin 0 to 10)
• low sound band (from bin 10 to 20)
• low-mid sound band (from bin 20 to 40)
• mid sound band (from bin 40 to 80)
• mid-high sound band (from bin 80 to 512)

The selected anchor points corresponds to frequency-time points
on spectrogram. We show an example of anchor points in figure 5.

The set of points in the neighborhood of the anchor points are
target zone used to generate a combinatory hash. The algorithm
goes through every single point and look for the target zone of
points in the neighboured as you can see in the figure 6. As when
we record an audio the points that are closely related in time are
likely to be captured. So a small portion of an audio file can be seen
as pair of points between a start point and a target zone as shown
in figure 7.It will enable the system to create a hash identifier of
each point in the target zone using:

• The frequency at which the anchor point is located.
• The frequency at which the point in the target zone is located.
• The time difference between the time when the point in the
target zone is located in the audio.

• The time when the anchor point is located in the audio.

3.3 Storing Fingerprints
After having multiple target zones, we generate the addresses for
each point based on the target zone. The size of the generated



cs533 Information Retrieval, Spring 2021, Bilkent University Tekin, Román-Brenes, Kuru, Shah and Jodeiri

Figure 6: Anchor Point and Target Zone.

Figure 7: Hash Time.

address is 32 bit integer, 9 bits for the frequency as we have only
512 possible frequencies, and 14-bits for the delta time.

• 9 bits for the “frequency of the anchor”
• 9 bits for the ”frequency of the point”
• 14 bits for the ”delta time between the anchor and the point”

Similarly the couple (“time of anchor” ; “text Id”) can be coded
in a 64-bit integer (32 bit for each part).We have implemented the
fingerprint table as simple array list of 64-bit integers as shown in
figure 8 where:

• the index of the array is the 32-bit integer address
• the list of 64-bits integers is all the couples for this address .

3.4 Query Matching
When a new sample comes into the system, the same steps repli-
cated to generate the fingerprint and each hash in the sample is
searched in the database. After that, a collection of matches is ob-
tained, where each match contains a address that points to couples.

Figure 8: Fingerprints in Database.

(a)

(b)

Figure 9

Figure 10: Histogram of matched record

Then, we extract time value from each couple and take the time
difference between the anchor of record. This process result time
differences for each audio id. When we plot the histogram of an
matched song, as shown in figure 10, we observe a high intensity
in a song range.



Shazam Signature Representation of Audio
for Documents cs533 Information Retrieval, Spring 2021, Bilkent University

This process is repeated for each audio in the couples, and we
note the highest count in each audio. Finally, we ranked thematched
audio and return the one with the highest counts as the searched
audio.

3.5 Web UI
In order to provide portability, the system, in particular its UI is
developed in Python, using Flask6 as its web server. A standard
interaction using forms guides the user through the process of
selecting the files to be fingerprinted, transform them, select a query
and see the results. This procedure can be seen in the YouTube video
at https://youtu.be/2iD4MAEYlZQ

4 EXPERIMENTATION AND RESULTS
In experimentation we performed our algorithm on a benchmark
dataset. For evaluation and comparison of our algorithm, we se-
lected a baseline method as doc2vec.

4.1 Dataset
The chosen test collection is the 500 PubMed Central Full Text
Test Collection, and can be found at https://ii.nlm.nih.gov/DataSets/
FullText/PubMedCentral.medline. It was used in the Full Text exper-
iment to date reported on in the 2005 AMIA paper, "Semi-Automatic
Indexing of Full Text Biomedical Articles, AMIA 2005" [1]. In this
collection, papers from several medical topics are stored as abstract
and metadata. The abstract will be used as the input for the algo-
rithm.

A fragment of a record of said collection is shown next:

PMID- 10984461
OWN - NLM
STAT- MEDLINE
DA - 20001016
... ... ...
DP - 2000 Sep-Oct
TI - Opportunities at the intersection of bioinformatics and health informatics: a case study.
PG - 431-8
AB - This paper provides a "viewpoint discussion" based on a presentation made to the 2000 Symposium of
the American College of Medical Informatics. It discusses potential opportunities for researchers in health
informatics to become involved in the rapidly growing field of bioinformatics, using the activities of the Yale
Center for Medical Informatics as a case study. One set of opportunities occurs where bioinformatics research
itself intersects with the clinical world.
... ... ...
AD - Yale University, New Haven, Connecticut, USA.
... ... ...
MH - Research Support, U.S. Gov’t, P.H.S.
EDAT- 2000/09/14 11:00
MHDA- 2000/10/21 11:01
PST - ppublish
SO - J Am Med Inform Assoc 2000 Sep-Oct;7(5):431-8.

Each abstract in the dataset is converted to audio as we explained
in section 3.1. Using these audio, we created our hash dataset of
our Shazam algorithm. Then, we created queries using sections
of abstracts. Since Shazam algorithm is record length dependent,
we used queries with section length equal to 50% and 80% of an
abstract. As the input, we used the audio of queries belonging to
an abstract. Then, we tried to retrieve the same abstract that we
used for creating the query. Abstracts with the highest matched
rate are retrieved. If the abstract correspond to query in retrieved 𝑘
documents, we accepted the query as hit.

6https://flask.palletsprojects.com/

Shazam Doc2Vec
Evaluation 50% 80% 50% 80%
top-5 31.26 57.14 88.63 91.15
top-10 36.59 64.84 91.15 91.36

Table 1: Top-5 and top-10 scores of Shazam and Doc2vec
methods on queries with different proportion of lengths

4.2 Baseline Method: Doc2vec
Using doc2vec 7, a baseline for comparison was established. Each
document was used to train a model and then said model was
queried with documents created from using 50% and 80% of the text
of the original. As can be seen in table 1, scores of around 90% were
hit both on the top-5 and top-10 documents using either queries
with 50% lenght or 80%.

4.3 Results
We show the results of experiments on 1. Shazam score performed
worse compared to our baseline methodology. However the doc2vec
has a different input domain than Shazam algorithm, while Shazam
algorithm takes audio as input, input of doc2vec is raw text. This do-
main difference can create high gap between performances. In our
experiments, we observed that we need to perform further analysis
on effect of query length, document length, sampling frequency
and bit rate. All of these factors effect the performance of Shazam
algorithm. Furthermore, Shazam algorithm is targeted on songs
which has different characteristics compared to voice. Shazam’s tar-
get is to differentiate songs according to their sound characteristics.
However, in our methodology we kept our sound characteristics
the same between samples. To solve this problem, in further studies,
another time series input can be obtained from input text instead of
voice. An example time series can be the distance change between
two subsequent word vectors. After that, Shazam algorithm can dis-
tinguish texts according to different characteristics of spectrogram
of input series.

5 CONCLUSIONS
During the course of this project, the use of Shazam’s algorithm for
text retrieval was demonstrated as a proof of concept.
Even if the results show some positives results, the effects on several
factors like document and query length, sampling rate of audio files,
bit rate of audio files, amplitude transformations, low or high pass
filters, among others must be further studied.
Results also point that the query size is a big influence on hit rate.
Using the byte-to-audio conversion, a phenomenon can arise where
the ASCII value of the lower case letters at the end of the alphabet is
higher than the capital case letters at the beginning of the alphabet.
This can cause a bad configuration of parameters that might miss
the peaks in frequency thus missing in turn good anchor points.
In the speech-to-audio conversion, a local method is advised, since
Google Cloud have limited use per time frame plus the network
transmissions cause delay on building hashes and querying.
Finally, despite using an unoptimized model, a 60% match hit ratio
was achieved.
7https://radimrehurek.com/gensim/models/doc2vec.html

 https://youtu.be/2iD4MAEYlZQ 
https://ii.nlm.nih.gov/DataSets/FullText/PubMedCentral.medline
https://ii.nlm.nih.gov/DataSets/FullText/PubMedCentral.medline
https://radimrehurek.com/gensim/models/doc2vec.html


cs533 Information Retrieval, Spring 2021, Bilkent University Tekin, Román-Brenes, Kuru, Shah and Jodeiri

REFERENCES
[1] C. W. Gay, M. Kayaalp, and A. R. Aronson. 2005. Semi-automatic indexing of full

text biomedical articles. AMIA Annu Symp Proc (2005), 271–275.
[2] Tomas Larrain, John S. Bernhard, DomingoMery, and KevinW. Bowyer. 2017. Face

Recognition Using Sparse Fingerprint Classification Algorithm. IEEE Transactions
on Information Forensics and Security 12, 7 (July 2017), 1646–1657. https://doi.org/
10.1109/tifs.2017.2680403

[3] X. Sun, W. Zhang, and D. Chen. 2018. Movie Retrieval Based on Shazam Algorithm.
In 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference
(ITOEC). 1129–1133. https://doi.org/10.1109/ITOEC.2018.8740531

[4] Nicolae Surdu. 2021. How does Shazam work to recognize a song
? https://web.archive.org/web/20161024115723/http://www.soyoucode.com/

2011/how-does-shazam-recognize-song Retrieved from the Internet Archive
https://web.archive.org/.

[5] Maciej Walczynski and Dagmara Ryba. 2019. Effectiveness of the acoustic
fingerprint in various acoustical environments. In 2019 Signal Processing: Al-
gorithms, Architectures, Arrangements, and Applications (SPA). IEEE. https:
//doi.org/10.23919/spa.2019.8936781

[6] A. L. Wang. 2003. An industrial-strength audio search algorithm. In ISMIR
2003, 4th Symposium Conference on Music Information Retrieval. 7–13. in , S.
Choudhury and S. Manus, Eds., The International Society for Music Informa-
tion Retrieval. http://www.ismir.net: ISMIR, October , pp. . [Online]. Available:
http://www.ee.columbia.edu/ dpwe/papers/Wang03-shazam.pdf.

https://doi.org/10.1109/tifs.2017.2680403
https://doi.org/10.1109/tifs.2017.2680403
https://doi.org/10.1109/ITOEC.2018.8740531
https://web.archive.org/web/20161024115723/http://www.soyoucode.com/2011/how-does-shazam-recognize-song
https://web.archive.org/web/20161024115723/http://www.soyoucode.com/2011/how-does-shazam-recognize-song
https://web.archive.org/
https://doi.org/10.23919/spa.2019.8936781
https://doi.org/10.23919/spa.2019.8936781

	Abstract
	1 Introduction
	2 Objective
	3 Methodology
	3.1 Text-to-Audio
	3.2 Audio fingerprinting
	3.3 Storing Fingerprints
	3.4 Query Matching
	3.5 Web UI

	4 Experimentation and Results
	4.1 Dataset
	4.2 Baseline Method: Doc2vec
	4.3 Results

	5 Conclusions
	References

